Тригонометрический круг. Единичная окружность. Числовая окружность. Что это такое?
Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже..." )
Очень часто термины тригонометрический круг, единичная окружность, числовая окружность плохо понимаются учащимся народом. И совершенно зря. Эти понятия – мощный и универсальный помощник во всех разделах тригонометрии. Фактически, это легальная шпаргалка! Нарисовал тригонометрический круг – и сразу увидел ответы! Заманчиво? Так давайте освоим, грех такой вещью не воспользоваться. Тем более, это совсем несложно.
Для успешной работы с тригонометрическим кругом нужно знать всего три вещи.
Первое. Надо знать, что такое синус, косинус, тангенс и котангенс в применении к прямоугольному треугольнику. Сходите по ссылке, кто ещё не был. Тогда и здесь всё ясно будет.
Второе. Надо знать, что такое тригонометрический круг, единичная окружность, числовая окружность. Это я расскажу прямо здесь и сейчас.
Третье. Надо знать, как отсчитывать углы на тригонометрическом круге, и что такое градусная и радианная меры углов. Это будет в следующих уроках.
Всё. Разобравшись с этими тремя китами, получим надёжную, безотказную и совершенно законную шпаргалку для всей тригонометрии сразу.
А то в школьных учебниках с этим самым тригонометрическим кругом как-то не очень… И с единичной окружностью... Да и с числовой окружностью тоже.)
Начнём, помаленьку.
В предыдущем уроке вы усвоили, что синус, косинус, тангенс и котангенс (т.е. тригонометрические функции) зависят только от угла. И не зависят от длин сторон в прямоугольном треугольнике. Отсюда интересный вопрос. Пусть у нас есть вот такой угол. Назовём его угол β. Буква красивая.)
Раз есть угол, у него должны быть тригонометрические функции! Синус, скажем, или котангенс… А где их взять? Нет ни гипотенузы, ни катетов…
Как определить тригонометрические функции угла без прямоугольного треугольника? Задачка… Придётся опять лезть в сокровищницу мировых знаний. К средневековым людям. Те всё умели...
Первым делом возьмём координатную плоскость. Это самые обычные координатные оси, ОХ – по горизонтали, ОY – по вертикали. И… прибьём одну сторону угла к положительной полуоси ОХ. Вершина угла, естественно, в точке О. Крепко прибьём, чтобы не оторвать! Вторую сторону оставим подвижной, чтобы угол менять можно было. Раздвижной у нас угол будет. Конец неприбитой стороны угла обозначим точкой А. Получим вот такую картинку:
Так, угол пристроили. А где его синус, где косинус? Спокойно! Сейчас всё будет.
Отметим координаты точки А на осях. Наведите курсор мышки на картинку (или коснитесь картинки на планшете) и всё увидите. На ОХ это будет точка В, на ОY - точка С. Понятно, что В и С - это какие-то числа. Координаты точки А.
Так вот, число В будет косинусом угла β, а число С – его синусом!
С чего бы это? Древние люди учили нас, что синус и косинус – это отношения сторон! Которые от длин сторон не зависят. А мы тут координаты точки придумали… Но! Посмотрите на треугольник ОАВ. Прямоугольный, кстати… По древнему определению косинус угла β равен отношению прилежащего катета к гипотенузе. Т.е. ОВ/ОА. Ладно, не возражаем. Причём косинус и синус не зависят от длин сторон. А это вообще отлично! Это значит, что длины сторон можно брать какие угодно. Имеем полное право взять длину ОА за единицу! Неважно чего. Хоть метр, хоть километр, всё равно синус/косинус не меняются. А в этом случае

Вот так. Если провести такие же рассуждения для синуса, получим, что синус угла β равен АВ. Но АБ = ОС. Следовательно,

Можно сказать совсем просто. Синусом угла β будет игрековая координата точки А, а косинусом – иксовая. Слова нестандартные, но тем лучше. Запоминается надёжнее! А запомнить это надо. Железно запомнить. Косинус – по иксу, синус – по игреку.
Нет, не обидели средневековые люди древних! Сберегли наследие! И отношение сторон сохранили, и возможности расширили чрезвычайно!
Однако, а где тригонометрический круг!? Где единичная окружность!? Где числовая окружность!? Ни слова про круги не было!
Верно. Но осталось всего ничего. Взять подвижную сторону ОА и повернуть её вокруг точки О на полный оборот. Как вы думаете, какую фигуру нарисует при этом точка А? Совершенно верно! Окружность! Вот она.
Вот это и будет тригонометрический круг.
Вот так. А почему круг - тригонометрический? Круг и круг... Вопрос резонный. Поясняю. Каждой точке окружности соответствуют два числа. Координата этой точки по Х и координата этой точки по Y. А координаты у нас что? Наведите курсор на рисунок. Координаты у нас - точки В и С. Т.е. косинус и синус угла β. Т.е. тригонометрические функции. Поэтому круг и называется тригонометрическим.
Вспомнив, что ОА = 1, а ОА – радиус, сообразим, что это же – и единичная окружность тоже.
А так как синус и косинус - просто какие-то числа - этот тригонометрический круг будет ещё и числовой окружностью.
Три термина в одном флаконе.)
В данной теме эти понятия: тригонометрический круг, единичная окружность и числовая окружность – одно и то же. В более широком смысле, единичная окружность – это любая окружность с радиусом, равным единице. Тригонометрический круг – практический термин, как раз для работы с единичной окружностью в тригонометрии. Чем мы сейчас и позанимаемся. Работой с тригонометрическим кругом.
Первую половину работы мы уже выполнили. Нарисовали числовую окружность с помощью угла (классно звучит, правда?).
Теперь выполним вторую половину работы. Сделаем то же самое, только наоборот. Пройдём путь от тригонометрического круга к углу.
Пусть нам дана единичная окружность. Т.е. просто окружность, нарисованная на координатной плоскости, с радиусом, равным единице. Возьмём произвольно точку А на окружности. Отметим её координаты точками В и С на осях. Как нам помнится, её координаты - это cosβ (по иксу) и sinβ (по игреку). И синус с косинусом отметим. Получим вот такую картинку:
Всё понятно? Внимание, вопрос!
Где β!? Где угол β, без которого синуса и косинуса не бывает!?
Наводим курсор на картинку, и... вот он, вот он угол β! Именно его синус и косинус являются координатами точки А.
Кстати, здесь не нарисована прибитая сторона угла. Она и в предыдущих рисунках не нужна, только так, для понимания... Угол всегда отсчитывается от положительного направления оси ОХ. От направления стрелки.
А если точку А взять в другом месте? Единичная окружность - она круглая... Да пожалуйста! Где угодно! Поместим, к примеру, точку А во вторую четверть, отметим её координаты, синус, косинус, как полагается. Вот так:
Самые наблюдательные заметят, что синус угла β – положительный (точка С – на положительной полуоси OY), а вот косинус – отрицательный! Точка В лежит на отрицательной полуоси ОХ.
Наводим курсор на картинку и видим угол β. Угол β здесь – тупой. Чего, кстати, решительно не бывет в прямоугольном треугольнике. А зря, что ли, мы возможности расширяли?
Уловили суть тригонометрического круга? Если взять точку в любом месте окружности, её координатами будут косинус и синус угла. Угол отсчитывается от положительного направления оси ОХ и до прямой, соединяющей центр координат с этой самой точкой на окружности.
Вот и всё. Проще хотелось бы, да некуда. Кстати, мой вам совет. Работая с кругом, рисуйте не только точки на единичной окружности, но и сам угол! Как на этих рисунках. Понятнее будет.
Рисовать вам этот круг в тригонометрии постоянно придётся. Это не обязаловка, это и есть та легальная шпаргалка, которой пользуются умные люди. Сомневаетсь? Тогда назовите мне по памяти знаки вот таких выражений, к примеру: sin1300, cos1500, sin2500, cos3300? Я уж не спрашиваю про cos10500 или sin(-1450)... Про такие углы в следующем уроке написано.
И нигде-то вы подсказку не найдёте. Только на числовой окружности. Рисуем примерный угол в правильной четверти и сразу видим, куда попадают его синус и косинус. На положительные полуоси, или отрицательные. Кстати, определение знаков тригонометрических функций постоянно требуется в самых различных заданиях...
Или ещё, чисто для примера... Надо вам, например, узнать, что больше, sin1300, или sin1550? Попробуй-ка, сообрази просто так…
А мы умные, мы нарисуем тригонометрический круг. И нарисуем на нём угол примерно 130 градусов. Исходя только из того, что он больше 90 и меньше 180 градусов. Ориентируемся на угол, а не на окружность! Уж где пересечёт подвижная сторона угла окружность, там и пересечёт. Отмечаем игрековую координату точки пересечения. Это будет sin1300. Как на этом рисунке:
А затем, здесь же, нарисуем угол 155 градусов. Примерно нарисуем, зная, что он больше 130 градусов. И меньше 180. Отметим и его синус. Наведите курсор на картинку, всё увидите. Ну и что, какой синус больше? Тут уж совсем трудно ошибиться! Конечно sin1300 больше, чем sin1550!
Долго? Да ну?! Никто не требует от вас тщательно прорисовывать картину и обеспечивать мультипликацию! Поработаете с этим сайтом, и по этой задаче будете за 10 секунд рисовать вот такую картинку:

Другой и не сообразит, что это за каракули, да… А вы спокойно и уверенно дадите правильный ответ! Хотя, аккуратность и не мешает... А то можно такую "окружность" нарисовать, что ответ обратный получится...
Эта задачка - только один пример широких возможностей тригонометрического круга. Освоить эти возможности вполне реально. Чем мы и займёмся далее.
Чаще всего вам придётся иметь с тригонометрическими функциями в обычной, алгебраической записи. Типа sin450, tg(-3), cos(x+y) и так далее. Безо всяких картинок и тригонометрических кругов! Рисовать этот самый круг надо самим. Руками. Если, конечно, хотите легко и правильно решать задания по тригонометрии. В том числе и самые продвинутые. Но особо не волнуйтесь. Уж на этом сайте, в тригонометрии, я вам обеспечу рисование кругов! И вы освоите этот крайне полезный приём. Однозначно.
Подведём итоги урока.
В этой теме мы плавно перешли от тригонометрических функций угла в прямоугольном треугольнике к тригонометрическим функциям любого угла. Для этого нам понадобилось освоить понятия "тригонометрический круг, единичная окружность, числовая окружность". Это очень полезно.)
Здесь я рассказывал о тригонометрическом круге в применении к синусу и косинусу. Но тангенс и котангенс тоже можно увидеть на единичной окружности! Одно движение ручкой, и вы легко и правильно определяете знак тангенса - котангенса любого угла, решаете тригонометрические неравенства и вообще потрясаете окружающих своими тригонометрическими способностями.)
Если вас интересуют такие перспективы - можно посетить урок "Тангенс и котангенс на тригонометрическом круге" в Особом разделе 555.
Далее мы разберёмся со следующими вопросами.
Как выглядят углы в 1000 градусов? Как выглядят отрицательные углы? Что за загадочное число «Пи», на которое неизбежно наталкиваешься в любом разделе тригонометрии? И каким боком это «Пи» к углам пристраивается? Всё это – в следующих уроках.
Предыдущая страница: Что такое синус и косинус? Что такое тангенс и котангенс?
Следующая страница: Отсчёт углов на тригонометрическом круге.
Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)
А вот здесь можно познакомиться с функциями и производными.
|